Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1181745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346485

RESUMO

One of the crucial steps in assessing hemodynamic parameters using impedance cardiography (ICG) is the detection of the characteristic points in the dZ/dt ICG complex, especially the X point. The most often estimated parameters from the ICG complex are stroke volume and cardiac output, for which is required the left ventricular pre-ejection time. Unfortunately, for beat-to-beat calculations, the accuracy of detection is affected by the variability of the ICG complex subtypes. Thus, in this work, we aim to create a predictive model that can predict the missing points and decrease the previous work percentages of missing points to support the detection of ICG characteristic points and the extraction of hemodynamic parameters according to several existing subtypes. Thus, a time-series non-linear autoregressive model with exogenous inputs (NARX) feedback neural network approach was implemented to forecast the missing ICG points according to the different existing subtypes. The NARX was trained on two different datasets with an open-loop mode to ensure that the network is fed with correct feedback inputs. Once the training is satisfactory, the loop can be closed for multi-step prediction tests and simulation. The results show that we can predict the missing characteristic points in all the complexes with a success rate ranging between 75% and 88% in the evaluated datasets. Previously, without the NARX predictive model, the successful detection rate was 21%-30% for the same datasets. Thus, this work indicates a promising method and an accuracy increase in the detection of X, Y, O, and Z points for both datasets.

2.
Biomed Tech (Berl) ; 66(5): 515-527, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34162027

RESUMO

In impedance cardiography (ICG), the detection of dZ/dt signal (ICG) characteristic points, especially the X point, is a crucial step for the calculation of hemodynamic parameters such as stroke volume (SV) and cardiac output (CO). Unfortunately, for beat-to-beat calculations, the accuracy of the detection is affected by the variability of the ICG complex subtypes. Thus, in this work, automated classification of ICG complexes is proposed to support the detection of ICG characteristic points and the extraction of hemodynamic parameters according to several existing subtypes. A novel pattern recognition artificial neural network (PRANN) approach was implemented, and a divide-and-conquer strategy was used to identify the five different waveforms of the ICG complex waveform with output nodes no greater than 3. The PRANN was trained, tested and validated using a dataset from four volunteers from a measurement of eight electrodes. Once the training was satisfactory, the deployed network was validated on two other datasets that were completely different from the training dataset. As an additional performance validation of the PRANN, each dataset included four volunteers for a total of eight volunteers. The results show an average accuracy of 96% in classifying ICG complex subtypes with only a decrease in the accuracy to 83 and 80% on the validation datasets. This work indicates that the PRANN is a promising method for automated classification of ICG subtypes, facilitating the investigation of the extraction of hemodynamic parameters from beat-to-beat dZ/dt complexes.


Assuntos
Cardiografia de Impedância , Redes Neurais de Computação , Débito Cardíaco , Hemodinâmica , Humanos , Volume Sistólico
3.
IEEE J Biomed Health Inform ; 22(6): 1883-1894, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29990025

RESUMO

Impedance Cardiography (ICG) is a non-invasive method for monitoring cardiac dynamics using Electrical Bioimpedance (EBI) measurements. Since its appearance more than 40 years ago, ICG has been used for assessing hemodynamic parameters. This paper present a measurement system based on two System on Chip (SoC) solutions and Raspberry PI, implementing both a full 3-lead ECG recorder and an impedance cardiographer, for educational and research development purposes. Raspberry PI is a platform supporting Do-It-Yourself project and education applications across the world. The development is part of Biosignal PI, an open hardware platform focusing in quick prototyping of physiological measurement instrumentation. The SoC used for sensing cardiac biopotential is the ADAS1000, and for the EBI measurement is the AD5933. The recording were wirelessly transmitted through Bluetooth to a PC, where the waveforms were displayed, and hemodynamic parameters such as heart rate, stroke volume, ejection time and cardiac output were extracted from the ICG and ECG recordings. These results show how Raspberry PI can be used for quick prototyping using relatively widely available and affordable components, for supporting developers in research and engineering education. The design and development documents, will be available on www.BiosignalPI.com, for open access under a Non Commercial-Share A like 4.0 International License.


Assuntos
Cardiografia de Impedância/instrumentação , Eletrocardiografia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Adulto , Tecnologia Biomédica , Desenho de Equipamento , Feminino , Humanos , Masculino , Adulto Jovem
4.
J Electr Bioimpedance ; 9(1): 72-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33584923

RESUMO

The quality of an impedance cardiography (ICG) signal critically impacts the calculation of hemodynamic parameters. These calculations depend solely on the identification of ICG characteristic points on the ABEXYOZ complex. Unfortunately, contrary to the relatively constant morphology of the PQRST complex in electrocardiography, the waveform morphology of ICG data is far from stationary, which causes difficulties in the accuracy of the automated detection of characteristic ICG points. This study evaluated ICG recordings obtained from 10 volunteers. The results indicate that there are several different waveforms for the ABEXYOZ complex; there are up to five clearly distinct waveforms for the ABEXYOZ complex in addition to those that are typically reported. The differences between waveform types increased the difficulty of detecting ICG points. To accurately detect all ICG points, the ABEXYOZ complex should be analyzed according to the corresponding waveform type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...